





# Genetics of childhood asthma with severe exacerbations

Klaus Bønnelykke, MD, PhD

**COPSAC** 

Copenhagen Prospective Study on Asthma in Childhood Denmark



## Programme

- A registry-based genetic study on childhood asthma with severe excerbation
- A future clinical follow-up study



# From skin barrier defect to childhood asthma and allergy

### Filaggrin

A skin barrier protein

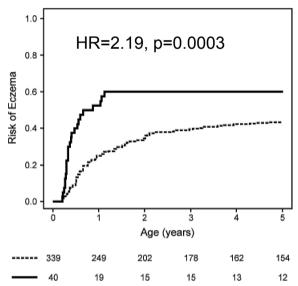
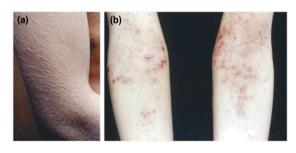
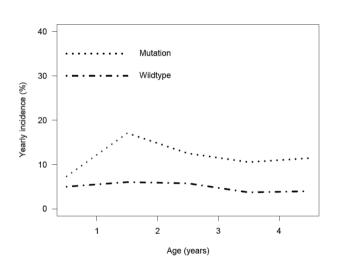



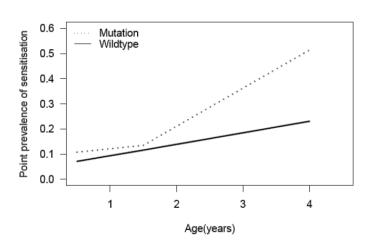

Figure 1. Kaplan-Meier Estimates of Cumulative Risk of Eczema in the COPSAC Cohort with and without FLG Mutation






Filaggrin and eczema

- COPSAC<sub>2000</sub>




# Filaggrin defined <u>atopic</u> asthma phenotype in early childhood

#### **Asthma exacerbations**



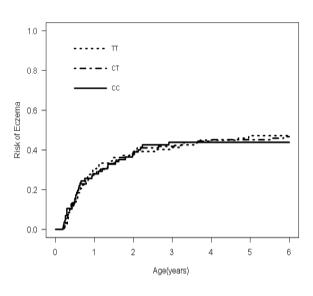
### Allergic sensitization



Bønnelykke et al. PAI 2010






## ORMDL3-defined early non-atopic asthma

#### **Asthma**

#### 

Bisgaard et al. AJRCCM 2009

#### No association with eczema





## The "black box" of pre-school asthma



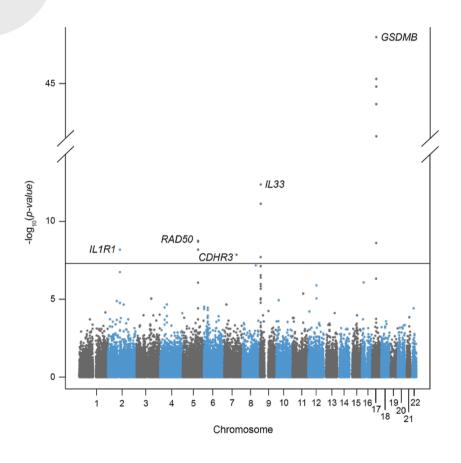
- A highly heterogeneous syndrome
- Viral-induced episodic symptoms
- Neutrophilic airway inflammation (?)
- Lack of objective measurements
- Etiologies largely unknown
- Poor treatment response

# COPSAC<sub>CASE</sub>- a registry-based cohort on asthma with severe exacerbations

- Genetic discovery
- Focusing on early childhood asthma with recurrent severe exacerbations
  - Clinical relevance
  - Highly heritable phenotype
  - Specific endotype (?)

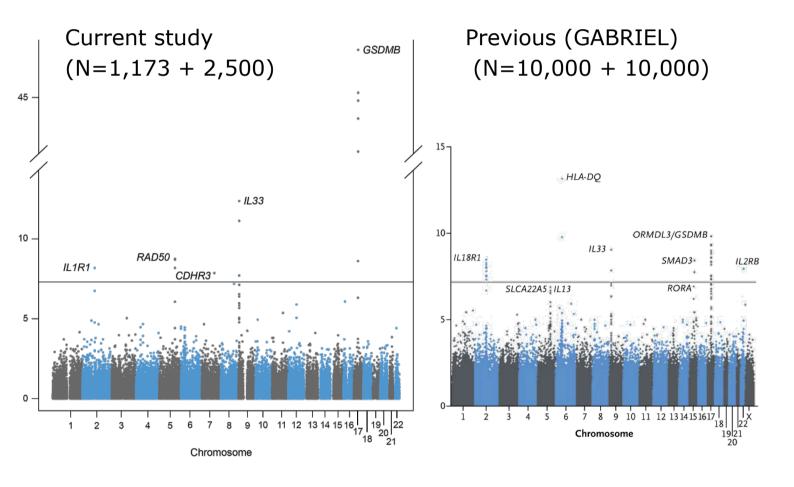
Bønnelykke et al. Nature Genetics 2014




## Design

- Asthma cases identified from hospital registries
  - 1,173 cases with recurrent asthma hospitalizations (2-6 years)
  - 2,500 controls
- Blood from the neonatal screening biobank
- DNA-amplification
- Genome-wide association study (125,000 SNPs)






## Results

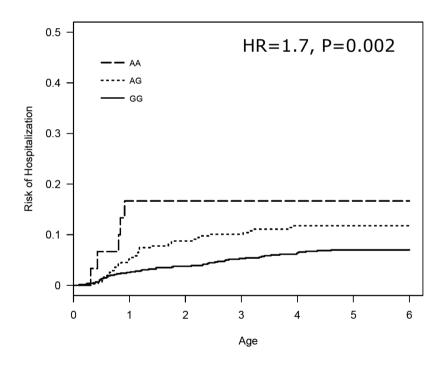




## Results compared with largest published GWAS



## Increasing effect size by increasing severity


#### **Current GWAS stratified on**

|       |         |           |         | _ | number of asthma hospitalizations |         |          |         |
|-------|---------|-----------|---------|---|-----------------------------------|---------|----------|---------|
|       |         | Previous  | Current |   |                                   |         |          | 6 or    |
|       |         | (Gabriel) | study   |   | 2                                 | 3       | 4-5      | more    |
|       | Cases   | N=10,365  | N=1,173 |   | N=272                             | N=228   | N=277    | N=358   |
| CCDMD | OR      | 1.17      | 2.28    |   | 1.87                              | 2.24    | 2.24     | 2.72    |
| GSDMB | P-value | 4.6E-09   | 1.3E-48 |   | 1.5E-10                           | 2.1E-13 | 1.7E-15  | 3.5E-27 |
| 11.00 | OR      | 1.20      | 1.50    |   | 1.32                              | 1.22    | 1.47     | 1.91    |
| IL33  | P-value | 8.7E-12   | 4.2E-13 |   | 0.005                             | 0.07    | 8.5E-( 5 | 6.2E-14 |
| D4D50 | OR      | 1.15      | 1.44    |   | 1.31                              | 1.26    | 1.45     | 1.58    |
| RAD50 | P-value | 1.4E-08   | 1.8E-09 |   | 0.01                              | 0.05    | 3.6E-04  | 1.3E-06 |
| IL1R1 | OR      | 1.15      | 1.56    |   | 1.53                              | 1.20    | 1.32     | 2.19    |
|       | P-value | 3.5E-12   | 6.6E-09 |   | 0.002                             | 0.20    | 0.04     | 3.2E-08 |
| CDUDA | OR      | 1.18      | 1.45    |   | 1.23                              | 1.37    | 1.42     | 1.63    |
| CDHR3 | P-value | 3.0E-06   | 1.4E-08 |   | 0.07                              | 0.01    | 0.003    | 1.6E-06 |

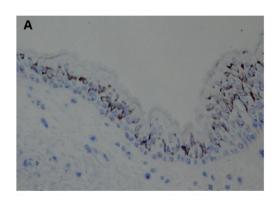


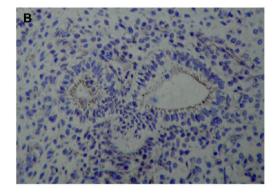
# CDHR3 replication in birth cohorts (COPSAC + MAAS)

### Acute hospitalization for asthma



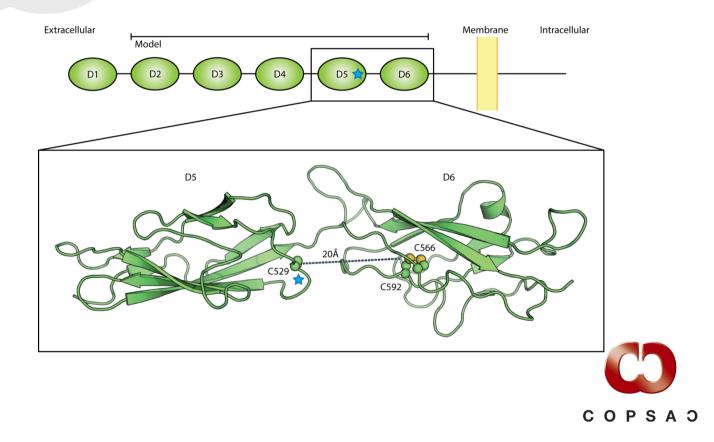



## CDHR3 subanalyses in birth cohorts


|                           | Meta-analysis                 |          |  |  |
|---------------------------|-------------------------------|----------|--|--|
|                           | COPSAC <sub>2000</sub> +MAAS+ |          |  |  |
|                           | Generation R                  |          |  |  |
|                           | OR (CI)                       | P value  |  |  |
| Asthma ever 0-6 yrs       | 1.40                          | 3.2 E-04 |  |  |
|                           | (1.16-1.67)                   |          |  |  |
| Asthma/recurrent          | 1.35                          | 7.5 E-05 |  |  |
| wheeze ever 0-3 yrs       | (1.16-1.57)                   |          |  |  |
| Asthma with               | 1.68                          | 0.002    |  |  |
| exacerbation (0-6 yrs)    | (1.21-2.34)                   |          |  |  |
|                           |                               |          |  |  |
| Asthma without            | 1.36                          | 0.08     |  |  |
| exacerbation              | (0.97-1.91)                   |          |  |  |
| Number of exacer-         |                               |          |  |  |
| bations (0-6 yrs)         | 1.60                          | 0.02     |  |  |
| >=2 exacerbations         | (1.08-2.38)                   |          |  |  |
|                           |                               |          |  |  |
| 1 exacerbation            | 1.33                          | 0.16     |  |  |
|                           | (0.89-1.98)                   |          |  |  |
| Eczema ever 0-6 yrs       | 0.93                          | 0.30     |  |  |
|                           | (0.82-1.06)                   |          |  |  |
| Allergic sensitization by | 1.22                          | 0.09*    |  |  |
| age 5/6 yrs               | (0.97-1.54)                   |          |  |  |

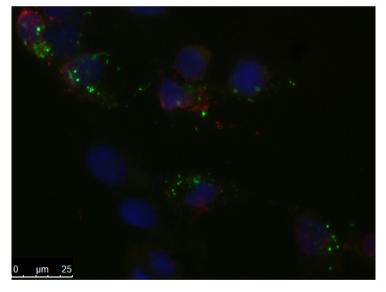


## CDHR3 – a lung epithelial protein

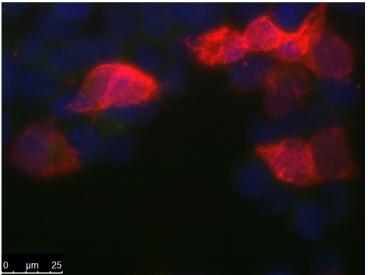

- Cadherins involved in cell adhesion, epithelial polarity and signalling
  - Family members associated with asthma (E-cadherin, PCDH1)
- CDHR3 predominantly expressed in respiratory epithelium and upregulated during epithelial differentiation








## CDHR3 protein model




# The risk variant affects surface expression of the protein

Risk variant (surface expression)



Wild type (intracellular expression)





| Species                       | Common name                    | Group   | Order           | 529                       | Ind. |
|-------------------------------|--------------------------------|---------|-----------------|---------------------------|------|
| Homo sapiens                  | Human                          | Mammals | Primates        | C (app 65%<br>homozygous) | _    |
| Pan troglodytes               | Chimpanzee                     | Mammals | Primates        | Υ                         | 1    |
| Pan paniscus                  | Bonobo                         | Mammals | Primates        | Υ                         | 1    |
| Gorilla gorilla               | Gorilla                        | Mammals | Primates        | Υ                         | 3    |
| Pongo abelii                  | Sumatran orangutan             | Mammals | Primates        | Υ                         | 1    |
| Nomascus leucogenys           | Northern white-cheeked gibbon  | Mammals | Primates        | Υ                         | 1    |
| Papio anubis                  | Olive baboon                   | Mammals | Primates        | Υ                         | 1    |
| Saimiri boliviensis           | Black-headed squirrel monkey   | Mammals | Primates        | Υ                         | 2    |
| Callithrix jacchus            | Common marmoset                | Mammals | Primates        | Υ                         | 1    |
| Otolemur garnettii            | Greater galago                 | Mammals | Primates        | Υ                         | 1    |
| Ornithorhynchus anatinus      | Duck-billed platypus           | Mammals | Monotremeta     | Υ                         | 1    |
| Monodelphis domestica         | Gray short-tailed opossum      | Mammals | Didelphimorphia | F                         | 1    |
| Sarcophilus harrisii          | Tasmanian devil                | Mammals | Dasyuromorphia  | F                         | 1    |
| Mus musculus                  | House mouse                    | Mammals | Rodentia        | Н                         | 2    |
| Cricetulus griseus            | Chinese hamster                | Mammals | Rodentia        | Н                         | 1    |
| Rattus norvegicus             | Brown rat                      | Mammals | Rodentia        | Н                         | 1    |
| Spermophilus tridecemlineatus | Thirteen-lined ground squirrel | Mammals | Rodentia        | Υ                         | 2    |
| Cavia porcellus               | Guinea pig                     | Mammals | Rodentia        | Υ                         | 1    |
| Odobenus rosmarus             | Walrus                         | Mammals | Carnivora       | Υ                         | 1    |
| Ailuropoda melanoleuca        | Giant panda                    | Mammals | Carnivora       | Υ                         | 1    |
| Canis familiaris              | Dog                            | Mammals | Carnivora       | Υ                         | 1    |
| Felis catus                   | Cat                            | Mammals | Carnivora       | Υ                         | 1    |
| Equus caballus                | Horse                          | Mammals | Perissodactyla  | Н                         | 1    |

#### Conclusions

- Identification of CDHR3 as a novel asthma gene
  - Early asthma with severe exacerbations
  - Highlights the importance of the airway epithelial barrier
  - May identify a novel disease mechanism
- Strong results for known asthma genes
  - Proves strength of specific phenotyping
  - Powerful approach for identifying phenotype specific as well as general disease mechanisms



# Mechanisms of Childhood Asthma with severe exacerbations (COPSAC<sub>CASE</sub>)

- A (future) clinical cohort of children with recurrent severe exacerbations
- Aiming to understand disease mechanisms
  - Genetic regulation and disease pathways
  - Subtypes of disease
  - Prediction of exacerbations
- Combining
  - global assessments of genetics, epigenetics and gene expression
  - clinical and immune assessments



#### Study design Cases Controls n=300 n=300 healthy >=4 exacerbations (+ 700 COPSAC controls) **Blood spot Blood spot** Epigenetics Epigenetics Assessment of asthma medication and School age (6-16 years) hospitalization **Baseline** Baseline Clinical and immune Clinical and immune assessment, genetics, assessment, genetics, epigenetics, gene expression epigenetics, gene expression Acute visit Estimated n=100 Assessed as baseline Follow-up Follow-up Clinical assessment Clinical assessment **Epigenetics Epigenetics**

COPSAO

# Genetic regulation and disease pathways (WP1)

- Integrative analyses of genetics, epigenetics and gene expression
- Focus on epigenetics
  - Increasing evidence of large role in asthma and allergy
  - Explain characteristics of asthma
    - → "Missing heritability"
    - → Early programming
  - Mediate environmental factors



### Methodology

- Genome-wide arrays (epigenetics as methylation)
- Analyses
  - → Longitudinal assessments
  - → Blood vs. target organ (nasal respiratory epithelium)
  - → Environmental factors
  - → Post-doc project (bioinformatician)

### Perspectives

- Identification of novel targets for prevention and treatment



## Functional subtypes of disease (WP2)

- Heterogeneity is a main reason for poor treatment response
- Methodology
  - Combining symptom characteristics, intermediate traits, allergy assessment, immune data and susceptibility genes/pathways
  - PhD-study supervised by bioinformatician
- Perspective
  - Improved treatment response by tailored management



## Prediction of exacerbations (WP3)

- Prediction based on clinical assessment is inadequate
- Methodology
  - Combining clinical and immune phenotyping with data on genetics, epigenetics and gene expression
  - (Metabolomic analyses of blood and exhaled air)
  - PhD-study supervised by bioinformatician
- Perspective
  - Prevention of severe asthma attacks by optimized treatment



| Assessments and biobank                               | Birth          | School-age<br>baseline | School-age<br>+ 1 year | Acute<br>visit |
|-------------------------------------------------------|----------------|------------------------|------------------------|----------------|
| Clinical assessments                                  |                |                        |                        |                |
| Symptom burden                                        |                | ▼                      | ▼                      | ▼              |
| Lung function, airway reactivity, airway inflammation |                | ▼                      | ▼                      | ▼              |
| Allergy measurement (skin prick test + specific IgE)  |                | ▼                      |                        |                |
| Immunology                                            |                |                        |                        |                |
| Mucosal imprint for cyto-, chemokines                 |                | ▼                      | ▼                      | ▼              |
| Stimulated PBMCs                                      |                | ▼                      | ▼                      | •              |
| Epigenetics                                           |                |                        |                        |                |
| Airway epithelium (nasal)                             |                | ▼                      | ▼                      | ▼              |
| Peripheral blood                                      | lacktriangle   | ▼                      | ▼                      | ▼              |
| Gene expression                                       |                |                        |                        |                |
| Airway epithelium (nasal)                             |                | ▼                      | ▼                      | ▼              |
| Peripheral blood                                      |                | ▼                      | ▼                      | ▼              |
| Metabolomics                                          |                |                        |                        |                |
| Exhaled air (Volatile Organic Compounds)              |                | ▼                      | ▼                      | $\blacksquare$ |
| Peripheral blood                                      | $\blacksquare$ | ▼                      | ▼                      | $\blacksquare$ |
| Microbiome                                            |                |                        |                        |                |
| Nasal swab                                            |                | ▼                      | ▼                      | $\blacksquare$ |
| Fecal Sample cultures                                 |                | ▼                      | ▼                      | $\blacksquare$ |
| Exposures                                             |                |                        |                        |                |
| Vitamin D levels                                      | $\blacksquare$ | ▼                      | _                      | $\blacksquare$ |

▼ samples collected for future studies (outside the current proposal)



#### Collaboration

- Genetic and epigenetic analyses (University of Chicago)
- Bioinformatics (LIFE Sciences)
- Blood spot analyses (Statens Serum Institut)
- Replication
  - COPSAC<sub>2000</sub> + COPSAC<sub>2010</sub> birth cohorts
  - Consortium of birth cohorts (EAGLE)
- Experimental studies (University of Southampton)
- IMI, EU-projcet
  - Severe childhood asthma (N=200), breathomics
- "Global" meta-analysis on allergic rhinitis



### Perspectives

- Improve understanding of genetic regulation and disease pathways of severe childhood asthma
- Identify functional subtypes of severe disease
- Improve prediction of exacerbations
- Potential to improve prevention and treatment of disease
- Provide a valuable cohort for further studies of asthma etiologies

COPSAO